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Abstract

For a control system on a matrix Lie group with one or more configuration constraints that
are not left/right invariant, finding the combinations of (kinematic) control inputs satisfying
the motion constraints is not a trivial problem. Two methods, one coordinate-dependent and
the other coordinate-free are suggested. The first is based on the Wei-Norman formula; the
second on the calculation of the annihilator of the coadjoint action of the constraint one-form
at each point of the group manifold. The results are applied to a control system on SE(3) with
a holonomic inertial constraint involving the noncommutative part in a nontrivial way. The
difference in terms of compactness of the result between the two methods is considerable.

Keywords: matrix Lie groups, constrained motion, Wei-Norman formula, noninvariant one-
forms, coadjoint action.

1 Introduction

The purpose of this paper is to describe the kinematic equations of a control system whose config-
uration space is a Lie group with one or more holonomic constraints. Unlike the usual first order
nonholonomic constraints that originate from underactuation in kinematic control systems with
body-fixed actuators, the constraints we treat here are expressed as algebraic relations between the
state variables and can for example describe a particular control task or a requirement that has to
be fulfilled when doing motion planning. If both a control system and a constraint are invariant,
it is possible to confine the system to a subgroup of codimension equal to the dimension of the
constraint and to drop the constraint itself from the problem formulation. This is the case normally
treated in the literature, see for example [6]. In this letter we are instead interested in constraints
which are neither left nor right invariant and for which the “quotienting out” of the constraint is
not possible. Our main purpose is to propose two different methods to treat such a case.

∗Work done while this author was with the Division of Optimization and Systems Theory, Royal Institute of
Technology, Stockholm, Sweden. Support by the Swedish Foundation for Strategic Research through the Center for
Autonomous Systems at KTH is acknowledge.
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Consider an actuated rigid body. If the configuration constraints are inertial, i.e., admit a
natural description in an inertial frame for all times, the spontaneous way to represent them is
to consider canonical coordinates of the second kind, i.e., based on the product of exponentials
formula [12]. In fact, in this case, provided a suitable basis is chosen, a constraint can be directly
inserted in place of the corresponding state, without locally affecting the remaining configuration
variables. On the other hand, when the actuators of a kinematic control system are fixed on
the body, the dynamics is better described in terms of single exponential representation, i.e., of
one-parameter flow of a single time-varying vector field. In order to map the constraint into the
space of inputs, the Wei-Norman formula [13] can be used. Such formula is a local diffeomorphism,
which is global for solvable groups like SE(2), but not for more complicated groups like SE(3).
The main problem with this type of formulae is that it is coordinate-dependent and, for nonabelian
groups (and nonabelian constrained submanifolds), the representation of the constraint in the single
exponential is not unique but at each point of the group depends on the path chosen to leave that
point. So it does not give a clear idea of what the constraints look like in the input space. In other
words, while locally the first order contribution is clear in both systems of canonical coordinates,
due to the noncommutativity, the Wei-Norman formula gives only a “slice” of the admissible input
combinations that satisfy the constraints to the higher order terms.

In order to describe the entire annihilator space of a constraint at a point g of the group, we
compute all the directions that satisfy the constraint by evaluating the corresponding vector fields
at the identity. In fact, by assumption, the one form describing the constraint is not invariant, so it
will look different on different points of the group. The adjoint map allows us to Lie algebra evaluate
the control vector fields at any g in the reachable space. Since we have body fixed actuators (and
therefore left invariant control vector fields), it is reasonable to pull the one form of the constraint
back to the identity, pairing it with the adjoint of the admissible tangent directions at g. For the
sake of simplicity we will work under the assumption of full actuation, although even the weaker
assumption of controllability would have sufficed. Using standard pairing, the problem of finding
the orthogonal subspace to the constraint at g is transformed into the problem of annihilating the
coadjoint action on the one-form representing the constraint. All the combinations of inputs that
satisfy the constraint at g can then be parameterized in terms of the components of (the matrix
representation) of g. We would like to emphasize that these components are still coordinate-
independent. Obviously, the explicit calculation of the input functions has to pass through a
coordinatization of the group manifold, but, unlike in the Wei-Norman case, the independence
from the path followed by the flow of the system is retained. The main advantage is that, no
matter how complicated a constraint may look, at each point it is transformed into an algebraic
equation linear in the inputs.

The example used throughout the paper is a system in SE(3). The constraint here is that
the roll in spatial coordinates must be kept constantly equal to zero. This corresponds locally to
a one-from on the 3-dimensional space of rotations. Due to the noncommutativity of SO(3), the
one-form cannot be quotiented out i.e., cannot be globally expressed as a one-parameter curve in
SE(3) (nor in SO(3)).

2 Motion in presence of constraints

Consider a drift-free left-invariant kinematic control system evolving on a matrix Lie group G

ġ = g
n∑

i=1

Aiui g(0) = g0 g ∈ G (1)
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For sake of simplicity, we assume that the system is fully actuated i.e., n = dim G. Notice that
for all the considerations of this paper controllability would suffice; however, the formulae would
be rather complicated. If the system (1) is fully actuated then A1, . . . , An form a basis of the Lie
algebra g whose associate structure constants ck

ij are defined by

[Ai, Aj ] =
n∑

k=1

ck
ijAk i, j = 1, . . . , n (2)

where, because of the skew-symmetry of the Lie bracket ck
ij = −ck

ji.
Here we follow [8], Appendix A. Assume we have a constraint on the trajectories allowed for

our system:
φ(g) = 0 (3)

where φ : G → R and g ∈ G. Such a constraint is holonomic as it is imposed on the configuration
space of the manifold. Differentiating, the constraint can be described in terms of 1-forms as

〈dφ(g), ġ〉 = 0 (4)

with dφ(g) ∈ T ∗g G, ġ ∈ TgG and 〈· , ·〉 is a standard nondegenerate pairing T ∗G× TG → R. Using
left invariance, we obtain a Lie algebra evaluated pair

〈· , ·〉 : g∗, g → R (5)
A[

j , Ai 7→ 〈A[
j , Ai〉 = δj

i

that allows us to identify a basis
{
A[

1, A[
2, . . . A

[
n

}
of g∗. If, as is often the case, a (pseudo)

Riemannian metric structure is chosen, then the pairing is given by a symmetric nondegenerate
bilinear form, for example corresponding, for compact matrix groups, to the Killing form, i.e., to
the trace of the matrix product of the adjoint representation:

〈A[
j , Ai〉 = kj

i tr(adAjadAi) = δj
i

where ki
i 6= 0. The A[

j , j = 1, . . . , n, provide a basis
{
Lg−1∗A

[
1, . . . , Lg−1∗A

[
1

}
on T ∗g G via the push

forward map.
A constraint dφ is said left-invariant if

Lg
∗dφ(g) = dφ(I), I = identity of G

i.e., if the pull-back of the constraint to the identity corresponds to the constraint at the identity.
This is the case when the “path” followed by the constraint from the identity to g can be expressed
as a one-parameter subgroup of G. In particular, φ(g) = 0 is left/right invariant if and only if
φ−1(0) is a subgroup H of G (see Loncaric [6] for a formulation on SE(3)). In other words, for
a left-invariant constraint, there exists a left-invariant distribution of feasible velocities (the free
velocities) that corresponds to the annihilator of the constraint at each point and that constitutes
a subgroup. In this case, H is left-invariant with respect to the constraint and it can be factored
out; the system on G/H is not anymore constrained. Here however, we are interested in more
complicated one-forms than the left-invariant (or, specularly, right-invariant) ones, i.e., we want to
consider constraints whose pull-back to the Lie algebra Lg

∗dφ(g) depends on g.
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3 A coordinate-dependent formulation: the Wei-Norman formula

A coordinate-dependent way to describe the orthogonal space of a constraint is to use the Wei-
Norman lemma. There are two types of local representations of the solution of the system (1),
called canonical coordinates of the first and second kind. They rely respectively on the single
exponential representation (due to Magnus [7]) and on the product of exponentials formulation
(due to Wei-Norman [13]). The understanding of the relation between the two formulations for a
control system is first due to Brockett [1]. See also [4, 11] for recent uses of this idea for motion
planning of underactuated systems on matrix Lie groups.

Let g(t) ∈ G be the solution of the system (1) starting with initial condition g(0) = g0. Then
there exists a neighborhood of t = 0 in which g(t) can be expressed as a product of exponentials

g(t) = g0e
γ1(t)A1eγ2(t)A2 . . . eγn(t)An (6)

The Wei-Norman coordinate functions γi(t), i = 1, . . . , n, are scalar functions of t and evolve
according to the set of differential equations on Rn:γ̇1(t)

...
γ̇n(t)

 = Ξ(γ1(t), . . . , γn(t))−1

u1(t)
...

un(t)

 (7)

where γi(0) = 0 and the matrix Ξ(·) is a real analytic function of the γi.
If Adg is the adjoint map

Adg : g → g (8)
A 7→ AdgA = gAg−1

the explicit calculation of Ξ(γ(t)) can be done comparing the expression (1) with the derivative of
g with respect to the product of exponentials (6), (see [2]).

ġ(t) = g0

(
γ̇1(t)A1e

γ1(t)A1eγ2(t)A2 . . . eγn(t)An+

+γ̇2(t)eγ1(t)A1A2e
γ2(t)A2 . . . eγn(t)An + . . .+

+γ̇n(t)eγ1(t)A1 . . . eγn−1(t)An−1Aneγn(t)An

)
= g(t)

(
γ̇1(t)Ad(

∏1
i=n e−γi(t)Ai)A1 +

+γ̇2(t)Ad(
∏2

i=n e−γi(t)Ai)A2 + . . .+

+ γ̇n(t)Ad(e−γn(t)An)An

)
The comparison has to be done along each of the basis elements of g, i.e., we need to compute the
contribution of the adjoint operators

Ad(
∏j

i=n e−γi(t)Ai)Aj =
j∏

i=n

(
e−adAjγ(t)

)
Aj (9)

in terms of the Ai using the formula

e−BγAeBγ =
∞∑

k=0

(−1)kadk
BA

k!
γk
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where ad0
BA = A, ad1

BA = [B,A] and adk
BA =

[
B, adk−1

B A
]
. Iterating this procedure j times, it is

possible to write explicitly (9) in terms of the structure constants of the Lie algebra and therefore
to obtain an explicit expression for the Ξ(γ(t)). The complete calculation can be found in the
original paper [13] or in the book [10]. Notice the compatibility of the initial conditions in the two
expressions for ġ(t), which implies that Ξ(γ(0)) = I and therefore Ξ(·) locally invertible. Notice
moreover that, by the left invariance, the initial state g0 of the system does not appear in Ξ(γ(t)).
If g is solvable, then there exist coordinate functions γi that are globally valid, while this is not true
for semisimple Lie algebras. In this case, the nonsingularity of Ξ has to be checked at the point
of application. Using the expression (7), the constraint relation at g in terms of its coordinates
γ = (γ1, . . . , γn) becomes

dφ(γ(t))γ̇(t) = dφ(γ)Ξ(γ(t))−1u(t) = 0 (10)

which is linear in the inputs and can be solved locally using the implicit function theorem. Ξ(·)
changes according to the order chosen for the basis elements and therefore also the input combina-
tion solution of (10) looks different with different basis ordering. Only one possible combination of
inputs that satisfies the constraints is captured at a time by the method just presented. This hides
the geometric structure of the annihilator of dφ(g).

4 A coordinate free formulation

The Wei-Norman types of formulae are intrinsically coordinate-dependent. In fact, as we saw
above the configuration space admits different sets of canonical coordinates of the second kind,
with equivalent properties. In particular, the different parameterizations represent different paths
composed of one-parameter subgroups that allow to reach the same end-point g while satisfying
(3). What we really want to compute is the set of velocities that satisfies the constraint, i.e., that
leave the constraint invariant at a given point. As we have body fixed actuators, it is natural to
work in body fixed frame considering the one-form dφ as applied at g ∈ G, and pull it back to the
identity. The Lie algebra evaluated constraint dφg = L∗gdφ(g) then leaves on g∗, the dual of the
Lie algebra g.

For a fixed g ∈ G, g 6= I, we want to compute all the vector fields X such that X(g) = ġ = gX(I)
satisfies the constraint. However, pairing directly dφg and X(I) (or, similarly, dφ(g) and X(g))
just gives us the one-parameter solutions corresponding to the first order terms of the Taylor
expansion, neglecting those due to noncommutativity. Therefore, the method we use here consists
in “forgetting” about the way g is reached and considering only how much the tangent vector
η = X(g) ∈ TgG differs from ζ = X(I) ∈ g. In formulae, this is done by means of the adjoint map
(9). The task is then to look for all ζ ∈ g such that

〈dφg, Adg−1ζ〉 = 0 (11)

Adg−1 gives an inner automorphism of the Lie algebra, i.e., a change of basis in g corresponding to
the composition of left and right invariant maps and (11) gives the subspace of g annihilated by
dφg for a fixed g.

For a generic transformation connecting I to g (referred to I), the coadjoint action Ad∗g−1 :
g∗ → g∗ is defined through the pairing (see [9])

〈Ad∗g−1µ, ζ〉 = 〈µ, Adg−1ζ〉 µ ∈ g∗, ζ ∈ g (12)

In our case, we can use (12) to reformulate the problem (11) in the following way:

For a fixed g ∈ G, find all ζ ∈ g such that 〈Ad∗g−1dφg, ζ〉 = 0 (13)
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In the assumption of transitivity, g can assume any value in G. At g ∈ G, left invariance of the
control system means that (1) can be rewritten as ġ = gζ where ζ =

∑n
i=1 Aiui. Equation (13)

then gives a linear system of algebraic equations with the inputs as unknowns and Ad∗g−1dφg as
coefficients. Its solution gives all the combinations of control inputs belonging to the annihilator of
the constraint.

One may wonder what kind of structure such a space has. In order to see this, consider the
constraint at the identity of G: dφ(I) = dφI . We can choose a basis {A1, A2, . . . An} of g adapted
to the constraint, such that the constraint can be described in g∗ simply as

〈dφ(I), ·〉 = 〈A[
i, ·〉 = 0 for a fixed i

If a control system is fully actuated, then its control vector fields can be expressed in terms of any
given basis, just by taking fictitious inputs that are linear combinations of the original controls.
Therefore we can always think of (1) as already in the basis adapted to the constraint.

The submanifold Orb(A[
i) =

{
Ad∗g−1A[

i, g ∈ G
}

is called the coadjoint orbit of G on A[
i, it has

a symplectic structure and it is diffeomorphic to G/GA[
i
, where GA[

i
is the closed isotropy subgroup

of the coadjoint action at A[
i:

GA[
i
=

{
g ∈ G | Ad∗gA

[
i = A[

i

}
(14)

Deriving the pairing (12) with respect to g, at the identity

〈ad∗ξµ, ζ〉 = 〈µ, adξζ〉 µ ∈ g∗, ζ ∈ g (15)

where ξ = d
dtg(t)

∣∣
t=0

, the Lie algebra to GA[
i

is

gA[
i
=

{
Aj ∈ g | ad∗Aj

A[
i = 0

}
From (14), both the isotropy subgroup and its Lie algebra have dimension equal to the number of
constraints and do not admit a left/right invariant representation. So the tangent algebra of the
coadjoint orbit is the annihilator of gA[

i
in g∗:

g◦
A[

i
=

{
η ∈ g∗ | 〈η, Aj〉 = 0 ∀Aj ∈ gA[

i

}
From the coadjoint orbit theorem (see [9] Thm.14.3.1), the symplectic 2-form on Orb(A[

i ) is given
by

ω(ν)
(
ad∗ζ(ν), ad∗ρ(ν)

)
= 〈ν, [ζ, ρ]〉 ν ∈ Orb(A[

i), ζ, ρ ∈ g

5 Example on SE(3)

For sake of simplicity, we consider a constraint φ(g) = 0 that corresponds to one of the coordinate
directions, for example γi, being constant. If the constraint is linear, this does not imply a loss of
generality, as a basis “adapted” to the constraint can always be chosen. So the constraint (4) can
be expressed in terms of canonical coordinates of the second kind (6) along the flow of the system
as γ̇i = 0. By considering the corresponding row in (7), this gives a constraint in the input space,
i.e., a combination of inputs living in the annihilator of dφ(g).

The example we investigate here is a system on the Special Euclidean group SE(3). Such a
group is the semidirect product of rotations and translations in 3-dimensional space i.e., SE(3) =
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SO(3)s R3. The task could be, for example, to move an autonomous vehicle (like a submarine
vehicle [5] or an aerial vehicle [3]) keeping it “upright”.

Choosing a body fixed frame on the system, the left invariant representation of the kinematic
equations of motion is simply

ġ = gVb g(0) = g0 (16)

where g ∈ SE(3) and Vb ∈ se(3), the Lie algebra of SE(3). In the homogeneous representation, a
left invariant basis of se(3) is given by the 6 matrices

A1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , A2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , A3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

A4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , A5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , A6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


we can interpret A1 as the infinitesimal generator of the roll angle (around the x axis), A2 as
the pitch generator and A3 as the yaw generator (axis in the z direction). With such basis, the
kinematic of the system (16) can be rewritten as in equation (1), where ui are control signals
produced by body-fixed actuators.

The most reasonable mathematical formulation of “upright”, in the chosen basis, is in terms of a
pair of constraints that leave only one rotational degree of freedom (yaw angle). When u1 = u2 = 0,
the motion occurs around the vertical axis of rotation so that roll and pitch angles are kept constant.
In this case, as SO(3) is reduced to the 1-dimensional subgroup S1 (i.e., the two-form constraint is
left-invariant), the configuration space of the system reduces to the solvable group SE(2)×R, which
is non commutative because of the semidirect action in SE(2) but has trivial rotation part. As
we are interested in what happens for noncommutative rotations, we do not consider this situation
further.

The next best thing that a passenger on board of a vehicle can interpret as (noncommutative)
upright ego-motion is probably to allow pitch motion but not roll rotation with respect to the body
frame. In the canonical coordinates of the second kind, this situation is univocally described by
the (holonomic) constraint

γ̇1(t) = 0 (17)

5.1 Coordinate-dependent solution

Our task is now to characterize the motion on the submanifold that describes the constraint, more
explicitly to transform the constraint (17) into constraints in the space of inputs of the system
using the Wei-Norman formula. All the motion planning and/or stabilization will then have to be
performed on the constrained input space. Once an ordering of the basis of se(3) is chosen, the
Wei-Norman formula (7) can be computed explicitly. For example, keeping the order given by the
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cardinality of the basis index, after long and tedious calculations we obtain the following formula:


u1(t)

...

...
u6(t)

=



cos γ2 cos γ3 sin γ3 0 0 0 0
− cos γ2 sin γ3 cos γ3 0 0 0 0

sin γ2 0 1 0 0 0
−γ6 cos γ2 sin γ3 − γ5 sin γ2 γ6 cos γ3 −γ5 1 0 0
−γ6 cos γ2 cos γ3 + γ4 sin γ2 −γ6 sin γ3 γ4 0 1 0

γ5 cos γ2 cos γ3 + γ4 cos γ2 sin γ3 −γ5 cos γ3 + γ5 sin γ3 0 0 0 1




γ̇1(t)

...

...
γ̇6(t)


whose inverse around γ(0) = 0 is (compare with eg. [4])


γ̇1(t)

...

...
γ̇6(t)

 =



sec γ2 cos γ3 − sec γ2 sin γ3 0 0 0 0
sin γ3 cos γ3 0 0 0 0

− tan γ2 cos γ3 tan γ2 sin γ3 1 0 0 0
0 −γ6 γ5 1 0 0
γ6 0 −γ4 0 1 0
−γ5 γ4 0 0 0 1




u1(t)

...

...
u6(t)

 (18)

The condition (17) reformulated in the input space is then:

u1 = tan γ3u2 (19)

A coordinate representation like the canonical coordinates of the second kind used here for the
SO(3) part makes use of a set of Euler angles. Beside being not global, (as can be seen in (18)), such
local parameterization is also well-known for being non-unique because of the noncommutativity
of the group. This fact reflects here in the non-uniqueness of the constraint we obtain in input
space. In fact, restricting ourself to Euler parameter cases, the Wei-Norman formula depends on
the order on which the basis elements are chosen. We can think of the computations above as
corresponding to the triple ZYX of angles, i.e., rotation along A1 followed by A2 and then A3. If
instead we chose the opposite order XYZ, calling γ̃i the new local coordinates, the first line of the
Wei-Norman formula looks like

[ ˙̃γ1(t)
]

=
[
1 sin γ̃1 tan γ̃2 cos γ̃1 tan γ̃2 0 0 0

]  u1(t)
...

u6(t)


so that the constraint ˙̃γ1(t) = 0 is transformed to

u1 + sin γ̃1 tan γ̃2u2 + cos γ̃1 tan γ̃2u3 = 0 (20)

Notice, in particular, that the control authority involved in the constraint varies in the two sets of
local coordinates.

5.2 Coordinate-free solution

As before, we consider the constraint of zero roll angle (17). A point g ∈ SE(3) is isomorphic to
the pair (R, p) ∈ SO(3)× R3. The adjoint map at g can be expressed as the 6× 6 matrix

Adg =
[

R 0
p̂R R

]
(21)
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where p̂R = p × R. If we identify se(3) with R6 and the basis Ai with the standard Euclidean
basis ei, then also se(3)∗ ' R6, A[

i = ei and the matrix expression for the coadjoint Ad∗g−1 is the
transpose of Adg−1

Ad∗g−1 =
[
R p̂R
0 R

]
(22)

so that the coadjoint action on A[
1 ' e1 is

Ad∗g−1A
[
1 =

[
R p̂R
0 R

]


1
0
0
0
0
0

 =



r11

r21

r31

0
0
0


Using the inner product pairing in R6, the relation (13) reduces to:

r11u1 + r21u2 + r31u3 = 0 (23)
r2
11 + r2

21 + r2
31 = 1 (24)

where u = {u1, . . . , u6} ∈ R6 ' se(3) (or, in (13), ζ =
∑6

i=1 Aiui). As noticed above, only the
orthogonal part of SE(3) is involved in the constraint. The submanifold described by (23)-(24) is
a two-sphere at each point R ∈ SO(3), expressed in terms of the components of R, i.e., it depends
on how the point R looks like in the group manifold (but still it is independent of any choice of
local coordinates). Inserting (24) into (23):

r11u1 + r21u2 + u3

√
1− r2

11 − r2
21 = 0 (25)

While it is not so obvious to realize that (19) and (20) live in the same two-sphere, it is straight-
forward to check that indeed they satisfy (25) (up to a scale factor).

This two-sphere moves around on TgSO(3) according to the symplectic 2-form induced by the
coadjoint orbit.

6 Conclusion

A coordinate-dependent and a coordinate-free description of noninvariant inertial configuration
constraints for a kinematic control system on a matrix Lie groups are discussed in this paper. The
use of the coadjoint action allows to transform the constraints at each point into algebraic equations
which are linear in the inputs and are valid globally, while the solution based on the Wei-Norman
formula is more cumbersome and might be affected by singularities.
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